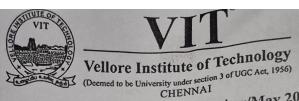
10. Find the Fourier transform of $f(x) = \frac{e^{-ax}}{x}$ and use it to evaluate $\int_0^\infty \tan^{-1} \left(\frac{x}{a}\right) \sin(x) dx$.

[10] (CO3/K5)

11. If $u_n = \sin^2(3n+5) + (n-1)^3$, then find the Z-Transform of u_n


[10] (CO5/K5)

, 12. Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = 1 \& y_1 = 0$ by using Z-Transform.

[10] (CO5/K3)

BL-Bloom's Taxonomy Levels - (K1-Remembering, K2-Understanding, K3-Applying, K4-Analysing, K5-Evaluating, K6-Creating)

4

Final Assessment Test(FAT) - Apr/May 2025

Final Assessment Test(FAT) - Aprilla			Winter Semester 2024-25
Programme	B.Tech.	Semester	Sudip Debnath
Course Code	BMAT102L	Faculty I valle	C1+TC1+TCC1
Course Title	Differential Equations and	Slot	CH2024250500798
	Transforms	Class Nbr	100
Time	3 hours	Max. Marks	thing elsewhere

Instructions To Candidates

• Write only your registration number in the designated box on the question paper. Writing anything elsewhere on the question paper will be considered a violation.

CO1: Find solution for second and higher order differential equations, formation and solving partial differential

CO2: Understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution.

CO3: Employ the tools of Fourier series and Fourier transforms.

CO4: Know the techniques of solving differential equations and partial differential equations.

CO5: Know the Z-transform and its application in population dynamics and digital signal processing.

Answer any 10 Questions (10 × 10 Marks)

 \searrow 01. Find the general solution of the differential equation $(D^2 - 2D + 1)y = 5e^{4x}$

[10] (CO1/K1)

- \sim 02. a. Find the charge q(t) on the capacitor in an LRC circuit when $L=0.25\,\mathrm{henry(h)}$, $R = 10 \text{ Ohm } (\Omega), C = 0.001 \text{ farad}(f)^{-}, E(t) = 0, q(0) = 10 \text{ Coulombs}(C), and i(0) = 0. (5 \text{ Marks})$ b. Form the PDE by eliminating arbitrary function f from the relation yz + zx + xy = f(z/(x+y)). (5 Marks) [10] (CO1/K3)
 - 03. Find the general solution of the partial differential equation $z(z^2 + xy)(px qy) = x^4$

[10] (CO1/K2)

[10] (CO2/K1)

- 04. a. Express $f(t) = \begin{cases} 0, & 0 < t < \pi/2 \\ sin(t), & \pi/2 < t \end{cases}$, interms of heaviside function and find the Laplace transform of f(t)
 - b. Obtain Fourier series of the function $f(x) = \begin{cases} x, & -\pi < x < 0 \\ -x, & 0 < x < \pi \end{cases}$ (5 Marks)

05. Find $L^{-1}\left(\frac{(s+1)e^{-\pi s}}{s^2+s+1}\right)$.

[10] (CO2/K2)

- $\begin{array}{c}
 \checkmark
 \end{array}$ 06. Solve the following initial value $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^t$; x(0) = 2 and x'(0) = -1using the (IVP) problem Laplace transform:
- 707. By using the Laplace transform, solve the partial differential equation $\frac{\partial u}{\partial x} + 6x \frac{\partial u}{\partial t} = 12x$, with u(0,t) = 2, for t > 0 and u(x,0) = 2, for x > 0.
 - [10] (CO4/K3) Find the Fourier series of $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0 \\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$. Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
- _09. Find the Fourier transform of the given Gaussian function $f(x) = 2e^{-3x^2}$. [10] (CO3/K2)