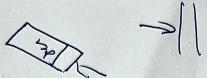
VIT
Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1986)

Reg. Number:	

Continuous Assessment Test (CAT) – II OCTOBER 2025


Programme	:	B Tech	Semester	:	Fall Semester 2025-26
Course Code & Course Title	:	BMAT205L, Discrete Mathematics and Graph Theory	Slot		C1+TC1+TCC1
Faculty	:	Dr. Sandip Dalui, Dr. Vidhya V, Dr. Ashish Kumar, Dr. Berin Greeni A, Dr. Pulak Konar, Dr. Tharasi Dilleswar, Dr. Nivedha D, Dr. Surath Ghosh, Dr. Jaganathan B, Prof. Chithraponnu R	Class Number		CH2025260100871, CH2025260100873, CH2025260100875, CH2025260100877, CH2025260100878, CH2025260100879, CH2025260100881, CH2025260100882, CH2025260100883, CH2025260100885
Duration	:	90 Minutes	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information
- Only non-programmable calculator without storage is permitted

Answer all questions

Q. No	Sub Sec.	Description	Marks	CO	BT
1		Solve $a_n = 4a_{n-1} + 5a_{n-2} + 3$, $a_1 = 3$, $a_2 = 5$ using generating function		3	Level K2
2		Let R be a relation on the set of all positive divisors of 150, defined by: aRb if and only if a divides b (i) Draw the Hasse diagram of (A, R), where A is the set of all positive divisors of 150 (5 marks) (ii) Determine whether (A, R) is a lattice. If yes, find the join and meet of the pairs (6,25) and (10,15) (3 marks) (iii) Find the complement of the element 50, if it exists. Otherwise, explain why it does not have a complement. (2 marks)	10	4	K3
3		(ii) Create the truth table for the Boolean expression obtained. (3 marks) (iii) Find Sum of products and Product of sums from the truth table (4 marks)	10	4	K4

Consider the graph G whose adjacency matrix is given below: 10			10		
b) Determine whether the following two graphs G and H are isomorphic 5 5 K3 v_1 v_2 v_3 v_4 v_5 v_4 v_5 v_4 v_5 v_4 v_5 v_4 v_5 v_4 v_5 v_5 v_4 v_5 v_6 v_7 v_8 v_8 v_8 v_9 v_8 v_9 v_8 v_9	In each of the following quest conclusion. (i) Check whether the grap (ii) Verify whether the grap	1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	10	5	K4
c) Construct the incidence matrix B for the following graph G . $ \begin{array}{cccccccccccccccccccccccccccccccccc$	ortible a graph with I	3 vertices each of degree 3? by giving proper	3	5	K3
v ₁	v_1 v_2 v_3 v_4	v_5 u_4 u_5 u_2 u_3 u_4	5	5	К3
	v ₁	c ₉ c ₃	2	5	К3