23BECN091

Final Assessment Test(FAT) - Apr/May 2025

Programme	B.Tech.	Semester	Winter Semester 2024-25
Course Code	BECE207L	Faculty Name	Prof. Thiripurasundari D
Course Title	Random Processes	Slot	D1+TD1
		Class Nbr	CH2024250501178
Time	3 hours	Max. Marks	100

Instructions To Candidates

· Write only your registration number in the designated box on the question paper. Writing anything elsewhere on the question paper will be considered a violation.

Course Outcomes

CO1: Compute the probability density functions for multiple random variables.

CO2: Perform transformation on multiple random variables and complex random variable

CO3: Interpret the random processes in terms of stationarity, statistical independence, autocorrelation.

CO4: Compute the power spectral density of the random signals

CO5: Interpret the effect of random signals on LTI systems output both in the time and frequency domain.

CO6: Design the Optimum linear systems for extracting signals in the presence of noise

Section - I Answer all Questions (7 × 10 Marks)

01. Given the joint distribution function

$$F_{X,Y}(x,y) = u(x)u(y)[1 - e^{-ax} - e^{-ay} + e^{-a(x+y)}]$$

(i) Find the conditional density functions $f_X(x|Y=y)$ and $f_Y(y|X=x)$ [8 marks]

(ii) Are the random variables X and Y statistically independent? [2 marks]

[10] (CO1/K3)

02. Statistically independent, zero-mean random processes $\alpha(t)$ and $\beta(t)$ have autocorrelation function $R_{\alpha\alpha}(\tau) = A_0 sin(2\pi\tau)$

$$R_{\beta\beta}(\tau) = B_0 e^{-9|\tau/2|}$$
 respectively

(i) Find the auto correlation function of the sum $W_1(t) = \alpha(t) + \beta(t)$ [3 marks]

(ii) Find the auto correlation function of the difference $W_2(t) = \alpha(t) - \beta(t)$ [3 marks]

(iii) Find the cross correlation function of $W_1(t)$ and $W_2(t)$ [4 marks]

[10] (CO3/K3)

03. Let two random processes X(t) and Y(t) be defined by

$$X(t) = A\cos(\omega_o t) + B\sin(\omega_o t)$$

$$Y(t) = B\cos(\omega_o t) - A\sin(\omega_o t)$$

where A and B are random variables and ω_0 is a constant.

(i) Find the cross correlation between X(t) and Y(t). [6 marks]

(ii) Is X(t) and Y(t) jointly WSS? If not, what is the condition to make it as WSS? [4 marks]

[10] (CO3/K4)

04. (a) A stationary random process X(t) has the power spectral density $S_{XX}(\omega) = \frac{24}{\omega^2 + 16}$

$$S_{XX}(\omega) = \frac{24}{\omega^2 + 16}$$

Find the mean square value of the process. [5 marks]

(b) Let X(t) and Y(t) be statistically independent random processes with zero mean and their autocorrelation functions

$$R_{XX}(\tau) = \frac{1}{2\pi}$$

$$R_{YY}(\tau) = e^{-10|\tau|}$$

A complex random process is given by $Z(t) = [X(t) + jY(t)]e^{j\omega_o t}$ where ω_o is a constant. Find the power spectral density of Z(t). [5 marks]

[10] (CO4/K3)

05. A discrete time WSS random process X[n] has zero mean and auto covariance function

$$C_{XX}[m] = egin{cases} \sigma_x^2 & m = 0 \ lpha \sigma_x^2 & |m| = 1 \ 0 & |m| \ge 2 \end{cases}$$

where $0 \le \alpha \le 1$

The process X[n] is passed through a linear system characterized by the equation Y[n] = X[n] - X[n-1] Find the auto covariance function $C_{YY}[m]$ and power spectral density $S_{XX}(e^{j\omega})$ of the output Y(t).

[10] (CO4/K4)

06. Two identical networks are cascaded. Each has impulse response

$$h_1(t) = u(t)3t \exp\left(-4t\right)$$

$$h_2(t) = u(t)4\exp\left(-5t\right)$$

A WSS process X(t) is applied to the cascade's input

- (i) Find the expression for the response Y(t) of the cascade [4 marks]
- (ii) If $E[X(t)] = \bar{X} = 6$, Find \bar{Y} [2 marks]
- (iii) Find $H(\omega)$ for the network [4 marks]

[10] (CO5/K3)

07. The auto correlation functions of a random signal X(t) and additive uncorrelated noise N(t) are

$$R_{XX}(\tau) = \frac{5}{8}e^{-4|\tau|}$$

$$R_{NN}(\tau) = \frac{7}{6}e^{-3|\tau|}$$

(i) Find the power spectrum of X(t) and N(t) [5 marks]

(ii) Find the transfer function of the Wiener filter for the given signal and noise [5 marks]

[10] (CO6/K3)

Section - II

Answer all Questions (2 × 15 Marks)

08. (a) A stationary random signal $X(\mathfrak{t})$ has auto correlation function $R_{XX}(\tau) = 5 e^{-2|\tau|}$. It is added to white noise [independent of X(t)] for $\frac{N_0}{2} = 10^{-3}$ and the sum is applied to filter having a transfer function

[independent of X(t)] for $\frac{2\pi}{2} = 10^{-3}$ and the sum is applied to filter having a transfer function $H(\omega) = \frac{4\omega}{(2+j\omega)^2}$

Find the signal component of the output power spectrum and the average power in the output signal. [8 marks] (b) An amplifier has a standard spot noise figure $F_0 = 6.31$. An engineer uses the amplifier to amplify the output of an antenna that is known to have an antenna temperature of $T_a = 180 \, K$.

(i) What is the effective input noise temperature of the amplifier? [4 marks]

(ii) What is the operating spot noise figure? [3 marks]

[15] (CO6/K4)

09. (a) Two random variables X and Y are defined by $\overline{X} = 0$, $\overline{Y} = -2$, $\overline{X^2} = 2$, $\overline{Y^2} = 4$ and $R_{XY} = -2$. Two new random variables are defined as W and U are W = 2X + Y, U = -X - 2Y. Find \overline{W} , \overline{U} , $\overline{W^2}$, $\overline{U^2}$, $\overline{\sigma_W^2}$, $\overline{\sigma_U^2}$, R_{UW} . [10 Marks]

(b) Two random variables X_1 and X_2 has zero means and variances $\sigma_{X_1}^2 = 9$ and $\sigma_{X_2}^2 = 16$. Their covariance $C_{X_1,X_2} = 5$. If X_1 and X_2 are linearly transformed to new variables Y_1 and Y_2 according to:

$$Y_1 = 4X_1 - X_2$$

$$Y_2 = 2X_1 + 5X_2$$

Find the mean, variance and covariance of Y_1 and Y_2 . [5 Marks]

[15] (CO2/K3)

BL-Bloom's Taxonomy Levels - (K1-Remembering, K2-Understanding, K3-Applying, K4-Analysing, K5-Evaluating, K6-Creating)