

Reg. Number:

ontinuous Assessment Test (CAT) – II OCTOBER 2025

ACSESS	1		
Continuous Assessa	Semester	:	FS 2025-26
Programme : B.Tech CSE (AI & ML Specilization)	Class Number	:	CH2025260102135,CH2025260102137, CH2025260102133,CH2025260102129, CH2025260102131
Course Code & BCSE 209L & Dr. Bhargavi R, Dr. Prakash P, Dr. Rajalakshmi R, Dr. Sajidha S A, Dr. Rajalakshmi R, Dr. Sajidha S P Syed Ibrahim S P	Slot	:	A2 + TA2
Esculty : Dr. Kajum S P			50
Duration : 90 minutes Ouration : 90 minutes General Instructions: Write only your registration number on the question information Answer	estion paper	in i	the box provided and do not write other

inform	Answer all questions			BT
IIIOI	77/10 91 (7.10)	Marks	СО	Level K4
Sub Sec.	a) A retail company wants to great a) A retail company wants to great on the following categorical features: on the following categorical features: Region (North, South, East, West) Region (North, South, East, West) Region (North, South, East, West)	15	CO4	K4
v	 Wallet) Shopping Frequency (Low, Medium, High) Loyalty Membership (Yes, No). Apply an appropriate algorithm and illustrate the steps in detail to group the customers [5 Marks] b) Design a simple multilayer perceptron (MLP) to predict student academic performance based on two predict student academic performance based on and permalized input features: study hours (x1 = 0.6) and predict student features: study hours (x1 = 0.6) and predict student features: study hours (x1 = 0.6) and predict student features: study hours (x2 = 0.6) and predict student features: study hours (x3 = 0.6) and predict student features: study hours (x3 = 0.6) and predict student features: study hours (x3 = 0.6) and predict student features: study hours (x3 = 0.6) and predict student features: study hours (x3 = 0.6) and predict student features: study hours (x3 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: study hours (x4 = 0.6) and predict student features: student feature			
	previous exam score (n^2) have one hidden layer with a single neuron and a single have one hidden layer with a single neuron and a single have one hidden using sigmoid activation functions output neuron, using sigmoid activation functions output. Given initial weights $w_1 = 0.3$ (input ₁ to thidden), $w_2 = 0.2$ (input ₂ to hidden), and $v = 0.4$ (hidden to output), along with biases $b_1 = 0.1$ (hidden layer) and $b_2 = 0.05$ (output layer), with a learning rate of $\eta = 0.5$ and target output $v = 1$ (indicating pass).			
	i) Perform one forward pass and compute the predicted output \hat{y} [3 marks] ii) Calculate the mean squared error loss between the predicted and target values. [2 marks] iii) Apply backpropagation and update all parameters using gradient descent by illustrating the steps involved [5 marks]			

			T 601	1/2
2	Consider a two-class classification problem with a dataset that is perfectly separable by a linear boundary. You are given a choice between a Hard-Margin SVM and a Soft-Margin SVM with a very high value of the penalty parameter C. a) How would you compare the decision boundaries and margins of these two models? [4 Marks] b) If you add a single, highly influential outlier within the opposite class's data, how would each model's decision boundary likely to change? Justify your answer. [4 Marks] c) Based on your analysis, elaborate which SVM (soft margin / hard margin) will be more robust and practical choice for real-world engineering problems. [3 Marks] d) Discuss the impact on the margin in the following two cases i) Removing the support vectors from the data [2 Marks] ii) Removing the non-support vectors from the data	15	COI	К3
3	A wildlife researcher is tracking animal sightings in a forest. They have recorded the GPS coordinates (latitude and longitude) of 8 sightings of a rare species. The researcher wants to group sightings that are close together in space, where a group should have at least 2 points within a distance of 2 units from each other. Points that don't belong to any group should be treated as isolated. Sighting X Y 1 2 2 2 2 3 3 4 8 7 5 8 8 6 25 80 7 24 79 8 25 81 a) Using an appropriate algorithm, identify the clusters formed and noise points, if any. [7 Marks] b) Discuss why some sightings are grouped together and why others are classified as noise. [3 Marks]	10	CO2	K4
4	Consider a Kohonen Self-organizing network that can organize/group the data into five clusters. Consider a two dimensional input vector (x1, x2). Let the weights from first and second input nodes to all the five output nodes be [0.3, 0.2, 0.1, 0.8, 0.4] and [0.5, 0.6, 0.7, 0.9, 0.2], respectively.	10		

1	a) Find the cluster unit close (BMU) to the data point		
	a) Find the cluster unit close (BNC). (0.2, 0.4) using a learning rate of 0.2. Determine the updated weights. [5 marks]	CO3	K3
	b) Now consider another input data (0.6, 0.6). With a learning rate of 0.1, find the winning cluster for this input. Determine the updated weights. [5 marks]		
	Note: Use the square of the Euclidean distance to find the cluster distances.		
	********* All the best *********		

Il a data . .

d. Bowell