Reg. No.

Final Assessment Test(FAT) - Apr/May 2025

Programme

B.Tech.

Semester

Winter Semester 2024-25

Course Code

BCHY101L

Faculty Name

Prof. Subhayan Dey

Course Title

Engineering Chemistry

Slot

E1+TE1

Class Nbr

CH2024250501039

Time

3 hours

Max. Marks

100

Instructions To Candidates

Write only your registration number in the designated box on the question paper. Writing anything elsewhere
on the question paper will be considered a violation.

Course Outcomes

CO1: Understand the fundamental concepts in organic, inorganic, physical, and analytical chemistry.

CO2: Apply chemical concepts for the advancement of materials.

CO3: Analyze the principles of applied chemistry in solving the societal issues.

CO4: Evaluate the fundamental principles of spectroscopy and the related applications.

CO5: Design new materials, energy conversion devices and new protective coating techniques.

Answer any 10 Questions (10 × 10 Marks)

- 01. (A) Derive an expression for the work done in a reversible isothermal expansion and reversible isothermal compression of a gas (5 Marks)
 - (B) Derive the relation between the change in internal energy and the change in enthalpy for an ideal gas? Calculate the change in enthalpy when one mole of an ideal mono-atomic gas expands reversibly and isothermally. The change in the internal energy is 1384 J and work done by the gas is 923 J. (5 Marks)

[10] (CO1/K1)

- 02. (A) How does kinetics of a reaction varies with temperature and justify your answer. Calculate the activation energy of a reaction whose rate constant is tripled by a 10 °C rise in temperature in the vicinity of 27 °C. (5 Marks)
 - (B) Prove that the half-life time of a first order reaction is independent of initial concentration of reactant. Show that for a first-order reaction, the time requires for 99.9% completion of the reaction is 10 times that required for 50% completion. (5 Marks)

[10] (CO1/K2)

- 03. (A) Determine the CFSE of $[CrF_6]^{3-}$ and $[Cr(CN)_6]^{3-}$. Despite the same oxidation number, the two complex solutions are in different colours. Explain (Given: atomic number of chromium is 24) (6 Marks)
 - (B) Determine the stability of ferrocene applying the 18-electron rule. (4 Marks)

[10] (CO1/K2)

04. Predict the type of aromaticity of the following compounds and justify your answer:

[10] (CO1/K3)

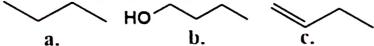
05.	(A) Write the half-cell and net cell reactions take place in the following cell. Determine EMF generated d	uring
	the operation of cell. (5 Marks)	5

$$Fe|Fe^{2*}$$
 (0.05 M) $||Cu^{2*}$ (0.01 M) $||Cu||$

The standard reduction potentials of Fe|Fe²⁺ and Cu²⁺|Cu are=0.44 V and 0.34 V, respectively.

(B) How charge carrier mobility takes place in p-type and n-type semiconductors. (5 Marks)

[10] (CO5/K4)


- 06. (A) High charge carrier mobility in semiconductors enhances the efficiency of solar cells. Explain a fabrication method used to produce a semiconductor material that meet this requirement. (6 Marks)
 - (B) Discuss the working principle and construction of a fuel cell. (4 Marks)

[10] (CO4/K5)

- 07. (A) Differentiate thermoplastics and thermosetting polymers. (5 Marks)
 - (B) Explain the working principle of OLED with a neat sketch. (5 Marks)

[10] (CO3/K2)

08. (A) Discuss the possible electronic transitions that could take place in the following compounds with the help of energy level diagram (5 Marks)

- (B) How the diffraction patterns are formed during X-Ray analysis of a crystalline compound. Explain (5 Marks) [10] (CO3/K2)
- 09. (A) Mixed-bed ion exchange method is more efficient than individual ion exchange method. Discuss with suitable chemical reactions. (5 Marks)
 - (B) Explain the origin of knocking in diesel engine and state the significance of cetane number. (5 Marks)

 [10] (CO2/K5)
- 10. (A) 0.90 gram of a fuel containing 90% carbon, when burnt in a bomb calorimeter, increased the temperature of water from 27.3° to 29.3°C. If the calorimeter contains 500 grams of water and its water equivalents is 250 grams, calculate the HCV of the fuel. Give your answer in KJ/Kg (5 Marks)
 - (B) Discuss a physical vapor deposition for Ti coating on a self-cleaning glass. (5 Marks)

[10] (CO2/K5)

- 11. (A) Discuss the role of magnesium complexation to porphyrin ring in chlorophyll. (5 Marks)
 - (B) Explain the synthesis and applications of paracetamol. (5 Marks)

[10] (CO4/K1)

- 12. (A) Define nanomaterials. Discuss a top-down approach for the synthesis metal oxide nanoparticles (5 Marks)
 - (B) Distinguish optical and electron microscope (5 Marks)

[10] (CO5/K1)

BL-Bloom's Taxonomy Levels - (K1-Remembering,K2-Understanding,K3-Applying,K4-Analysing,K5-Evaluating,K6-Creating)