

24BRG1866

Final Assessment Test(FAT) - Apr/May 2025

Programme	B.Tech.	Semester	Winter Semester 2024-25
Course €ode	BECE102L	Faculty Name	Prof. Subhashini N
Course Title	Digital Systems Design	Slot	A1+TA1
	,	Class Nbr	CH2024250501667
Time	3 hours	Max. Marks	100

Instructions To Candidates


Write only your registration number in the designated box on the question paper. Writing anything elsewhere
on the question paper will be considered a violation.

Course Outcomes

endmodule

- CO1: Optimize the logic functions using and Boolean principles and K-map
- CO2: Model the Combinational and Sequential logic circuits using Verilog HDL
- CO3: Design the various combinational logic circuits and data path circuits
- CO4: Analyze and apply the design aspects of sequential logic circuits
- CO5: Analyze and apply the design aspects of Finite state machines
- CO6: Examine the basic architectures of programmable logic devices

Section - I Answer all Questions (3 × 10 Marks)

[10] (CO2/K2)

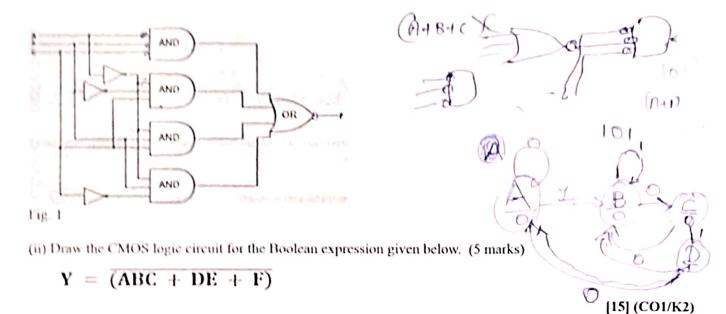
- A digital system requires a combinational circuit capable of performing both binary addition and subtraction of two 4-bit numbers. The system should efficiently handle both operations using a minimal hardware. (Each 5 Marks)
 - a) Propose a circuit design that meets the given requirement.
 - b) Explain how the circuit differentiates between addition and subtraction without using separate units.

[10] (CO3/K3)

03. Implement the following function using a PLA:

$$Y_{0} = \bar{A}\,\bar{B} + AB + B = \bar{B} + \bar{A}B + B$$

$$Y_{1} = \bar{A}\,\bar{B} + \bar{A}B + A\bar{B} = + \bar{A}\bar{B}$$


$$Y_{2} = \bar{A}\,\bar{B} + \bar{A} + B + A\bar{B} = + \bar{A}\bar{B}$$

$$Y_{3} = \bar{A}\,\bar{B} + \bar{A}\bar{B} + \bar{A}\bar{B} = + \bar{A}\bar{B}\bar{B}$$

[10] (CO6/K3)

Section - 11 Answer all Questions (2 × 15 Marks)

- 04 For the logic circuit shown in fig. 1,
 - (a) Write the minterns for the output function F and obtain the POS form of the output function F. (5 marks)
 - (b) Draw the logic circuit for the function obtained in (a) using NOR gates only. (5 marks)

Design a Moore sequence detector (1 bit Overlapping) to detect a sequence 1110 using D filpflop.

[15] (CO5/K2)

Section - 111 Answer all Questions (2 × 20 Marks)

- 06. (i) A factory has several safety sensors labeled D0 to D7, each associated with different types of hazards. Each sensor, when activated, indicates a specific safety concern, with higher-numbered sensors having priority over lower-numbered ones due to their severity. A control system encodes the highest-priority hazard currently detected into a binary signal sent to a central monitoring station. Additionally, the system produces an output signal V, indicating whether any hazard is currently detected.
 - (a) Identify the digital circuit and provide the truth table showing how the active sensor inputs (D0 to D7) are encoded into the binary output signals and the hazard-detection indicator V. (6 marks)
 - (b) Determine the binary signal sent to the central monitoring station when both sensor D2 and sensor D6 are activated simultaneously. (2 marks)
 - (c) Determine the value of the hazard-detection signal V under the same condition, and explain what this value indicates about the system's status. (2 marks)
 - (ii) Design a 16×1 multiplexer with only 4×1 multiplexers, and write the Verilog code for the complete implementation. (10 marks)

[20] (CO3/K3)

- 07. (i) Design a system to monitor cars entering a small parking lot with space for 6 cars. A sensor detects each car entering and increases the count using a counter. When the count reaches 6, the entrance gate should automatically close and the counter gets reset. Create a ripple counter for this system and draw a timing diagram showing how the count changes. (15 marks)
 - (ii) A barcode scanner system is used in a supermarket to read product codes and send the data to a central processing unit. The scanner captures one bit of data per clock cycle and stores the entire 4-bit product code before passing it to the billing system. To implement this, design a shift register and write the Verilog code of the designed circuit. (5 marks)

[20] (CO4/K3)

HL-Bloom's Taxonomy Levels - (K1-Remembering, K2-Understanding, K3-Applying, K4-Analysing, K5-Evaluating, K6-Creating)

Page 2 of 2