

Continuous Assessment Test - II - March 2025

Programme	;	B.Tech (ECE/ECM/VLSI)	Semester	1:	WS 2024-25
Course		Circuit Theory	Code	1:	BECE203L
Course	-	Circuit Theory	Slot	: D2+TD2-T : CH2024250: CH2024250: CH2024250: CH2024250:	D2+TD2-TDD2
Faculty	1:	Dr.A.Sivasubramanian	Class Nbr(s)	:	CH2024250502890
		Dr.Anith Nelleri			CH2024250502891
		Dr.Niraj Kumar			CH2024250502892
		Dr.G.Gugapriya			CH2024250502893
		Dr.M.Saranya Nair			CH2024250502894
		Dr.Saurav Gupta			CH2024250502895
		Dr. Ashis Tripathy			CH2024250502896
Time	:	90 Minutes	Max. Marks	1:	50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary.
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer ALL the questions

For the circuit shown in Fig. 1. (a) Write the incidence matrix. [3 Marks] (b) Use twigs (2,3,5) to form a tree and write its cut set matrix. [5 Marks] (c) Use equilibrium equation to find their node voltage, branch voltage and branch currents. [7 Marks] 1 1 1 2 30 4 100 5 300	Q.No.	Question Description	Marks	BT
	1	For the circuit shown in Fig. 1. (a) Write the incidence matrix. [3 Marks] (b) Use twigs (2,3,5) to form a tree and write its cut set matrix. [5 Marks] (c) Use equilibrium equation to find their node voltage, branch voltage and branch currents. [7 Marks] 10Ω 30Ω 20Ω + 15V - 20V	[15]	Lord 4

Consider the two two-port networks, N, and N _b shown in Fig. 3(a) and 3(b), respectively. Assuming that these circuits are connected in series, determine the Z-parameter and Y-parameter matrices for the combined two-port network. Fig. 3(a) Fig. 3(b) 4 (a) Design a series RLC type bandpass filter with cutoff frequencies of 20 kHz and 22 kHz. Assuming C = 60 pF, find R, L, and Q. [7 Marks] (b) Draw the circuit diagram to use above filter as band-stop filter? [3 Marks] Design a T- pad attenuator to give an attenuation of 30 dB and to work in a line of 3 kΩ impedance. Total Marks [50]	2	Calculate the impedance (Z) parameters of the circuit shown in Fig.2. $ \begin{array}{c c} 20 \Omega & 100 \Omega \\ \hline & & & & & & \\ & & & & & \\ & & & & & $	[10]	3
kHz and 22 kHz. Assuming C = 60 pF, find R, L, and Q. [7 Marks] (b) Draw the circuit diagram to use above filter as band-stop filter? [3 Marks] Design a T- pad attenuator to give an attenuation of 30 dB and to work in a line of 3 kΩ impedance.	3	respectively. Assuming that these circuits are connected in series, determine the Z-parameter and Y-parameter matrices for the combined two-port network. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[10]	3
Design a T- pad attenuator to give an attenuation of 30 dB and to work in a line of [5] 3 kΩ impedance.	4	kHz and 22 kHz. Assuming C = 60 pF, find R, L, and Q. [7 Marks]	[10]	4
	5	Design a T- pad attenuator to give an attenuation of 30 dB and to work in a line of 3 k Ω impedance.		3

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$