

Final Assessment Test(FAT) - Apr/May 2025

Programme B.Tech. Semester Winter Semester 2024-25

Course Code BECE203L Faculty Name Prof. Sivasubramanian A

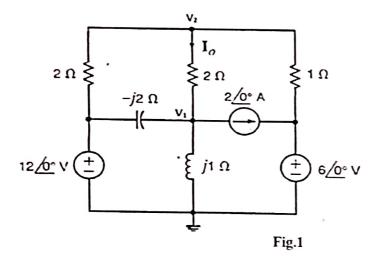
Course Title Circuit Theory Slot D1+TD1+TDD1

Class Nbr CH2024250502882

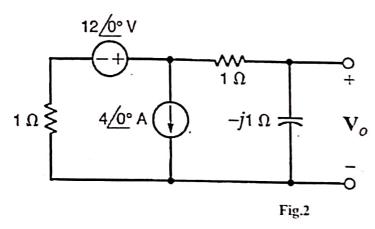
Time 3 hours Max. Marks 100

Instructions To Candidates

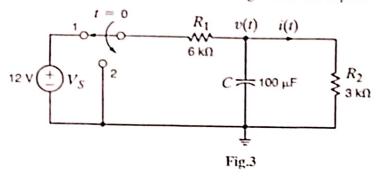
Write only your registration number in the designated box on the question paper. Writing anything elsewhere
on the question paper will be considered a violation.


Course Outcomes

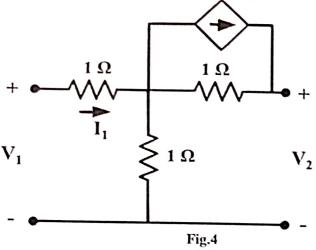
CO1: Apply the knowledge of various circuit analysis techniques such as mesh analysis, nodal analysis, and network theorems to investigate the given network.


- CO2: Analyse the resonance and transient response of the first order, second order circuits
- CO3: Able to solve the networks using graphical approach.
- CO4: Design and analyse two-port networks, passive filters and attenuators.
- CO5: Able to analyse the given network by transforming from time domain to S domain.
- CO6: Analyse the given network using Fourier series and transforming from time domain to frequency domain.

Section - I Answer all Questions (6 × 15 Marks)


01. (a) Determine the value of I₀ in the circuit of Fig.1 using nodal analysis. [8 Marks]

(b) Use superposition theorem and find V_{θ} in the network of Fig.2. [7 Marks]


02. (a) Consider the switch in the circuit of Fig. 3 has been in position 1 for a long time, and at time t = 0 the switch is moved to position 2. Determine the voltage across the capacitor for $t \ge 0$. [6 Marks]

(b) Consider a parallel RLC circuit with $R = 2 \Omega$, L = 1 H, and C = 10 mF. Find the voltage response v(t), across the capacitor, for t > 0 if the initial voltage of capacitor at time t = 0 is $V_0 = 50$ V and the initial current of the inductor at time t = 0 is $I_0 = 0$ A. [9 Marks]

[15] (CO2/K4)

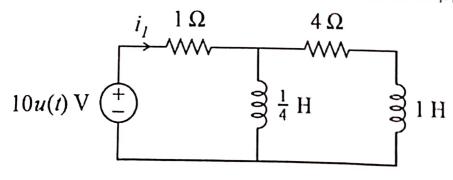
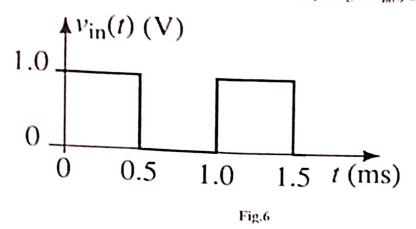
03. Find the h-parameters of the circuit shown in Fig. 4. Draw an equivalent circuit of the same. [15 Marks]

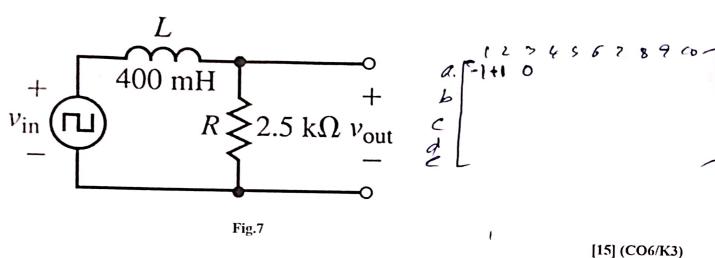
[15] (CO4/K3)

- 04. (a) Show that a series RL circuit is a low pass filter if the output is taken across the resistor. Calculate the corner frequency f_c if L = 2mH and $R = 10k\Omega$. [5 Marks]
 - (b) Design an RL high pass filter that uses a 40-mH coil and has a cutoff frequency of 5 kHz. [5 Marks]
 - (c) Design a symmetrical lattice attenuator to have an attenuation of 20 dB, to work with a line having characteristic impedance of 800Ω . [5 Marks]

[15] (CO4/K2)

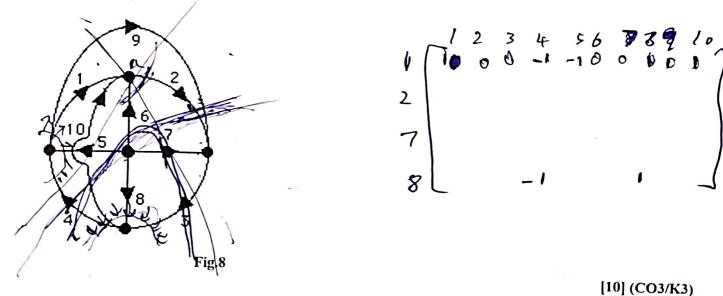
(a) Solve the circuit in Fig.5 using Laplace transform and find current i_I . [9 Marks]


Fig.5

(b) When the input to a system is a unit step function, the response is $10 \cos 4t u(t)$. Obtain the transfer function of the system. [6 Marks]

06. (a) Find the Fourier Series representation of the input signal $v_{in}(t)$ shown in Fig.6. [8 Marks]



(b) Using the obtained Fourier Series in (a), determine the output voltage v_{out} of the circuit shown in Fig.7. [7 Marks]

Section - II Answer all Questions (1 × 10 Marks)

07. For the network graph given in Fig.8, write the tie-set and cut-set matrix. Take the twigs of the tree as branches 1, 2, 7, 8. [10 Marks]

BL-Bloom's Taxonomy Levels - (K1-Remembering, K2-Understanding, K3-Applying, K4-Analysing, K5-Evaluating, K6-Creating)