24 Bectas.

Final Assessment Test(FAT) - Apr/May 2025

Programme	B.Tech.	Semester	Winter Semester 2024-25
Course Code	BECE203L	Faculty Name	Prof. Sauray Gupta
Course Title	Circuit Theory	Slot	D2+TD2+TDD2
		Class Nbr	CH2024250502895
Time	3 hours	Max. Marks	100

Instructions To Candidates

Write only your registration number in the designated box on the question paper. Writing anything elsewhere
on the question paper will be considered a violation.

Course Outcomes

CO1: Apply the knowledge of various circuit analysis techniques, such as mesh analysis, nodal analysis, and network theorems to investigate the given network.

CO2: Analyse the resonance and transient response of the first-order and second-order circuits.

CO3: Able to solve the networks using a graphical approach.

CO4: Design and analyse two-port networks, passive filters, and attenuators.

CO5: Able to analyse the given network by transforming from the time domain to the S domain.

CO6: Analyse the given network using the Fourier series and transform from the time domain to the frequency domain.

Section - I Answer all Questions (6 × 15 Marks)

01. (a) Find Vx in the circuit in Fig.1 using Norton's theorem. Draw the Norton equivalent circuit. [8 Marks]

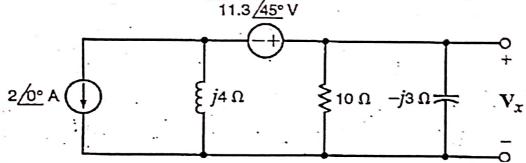


Fig. 1 (b) Calculate the maximum average power absorbed by the 1Ω resistor in the network shown in Fig. 2 [7 Marks]

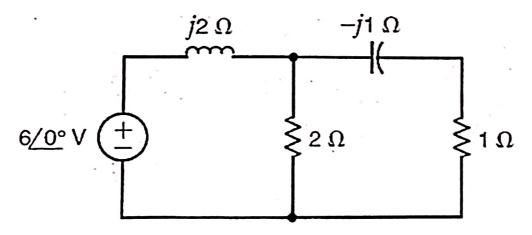


Fig.2

(a) The switch in Fig.3 is opened at t=0 after the circuit has reached steady state. Find the value of R and C such that α = 10 Np/s, and ω₀=30 rad/s. [6 Marks]

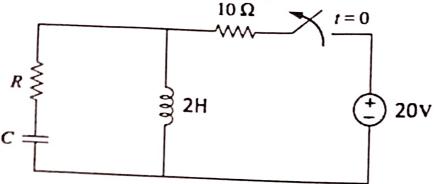


Fig.3

(b) Determine $v_0(t)$ for $t > \theta$ in the circuit of Fig.4. [9 Marks]

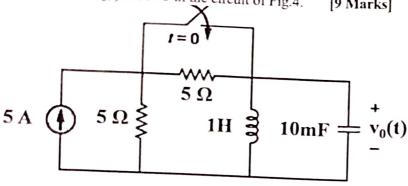


Fig.4

[15] (CO2/K4)

03. (a) In the two-port of Fig.5, let $Y_{12} = Y_{21} = 0$, $Y_{11} = 4$ mS, $Y_{22} = 20$ mS. Find V_o/V_s . [7 Marks]

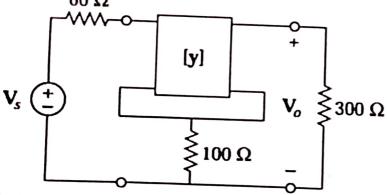


Fig.5

(b) Find the h parameters of the circuit in Fig.6. [8 Marks]

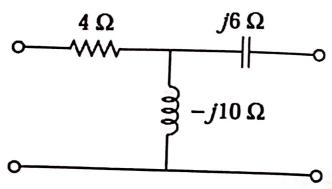


Fig.6

- 04. (a) Show that a series RL circuit is a high pass filter if the output is taken across the inductor. Calculate the corner frequency f_c if L = 0.1H and $R = 200\Omega$. Also draw the circuit and highlight the input and output
 - (b) Design a symmetrical bridged T-attenuator with an attenuation of 60 dB which is connected with a load of

[15] (CO4/K2)

05. (a) Find the transfer function $H(s) = V_o(s)/V_i(s)$ for the circuit shown in Fig. 7 Also find the output $v_o(t)$ when the input $v_i(t) = e^{-3t} u(t) [6 \text{ marks}]$

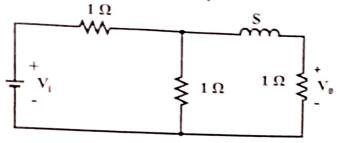


Fig.7

b) The input to the circuit shown in Fig. 8 is 12 V, at t=0 switch is closed. Determine the current in the inductor $i_L(t)$ for $t \ge 0$ by using Laplace transformation technique. [9 Marks]

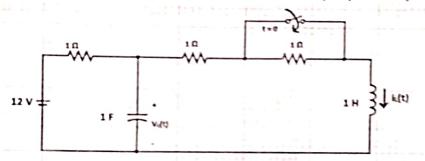


Fig.8

[15] (CO5/K3)

- 06. (a) Determine the Fourier series of input signal v_{in} (t) for the Fig.9. [7 Marks] (b) Using the obtained Fourier Series of Q.6(a), determine the output voltage v_{out} (t) of the circuit shown in
 - Fig.10. [8 Marks]

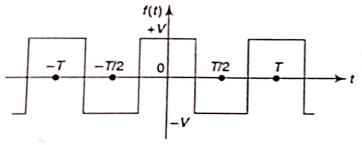


Fig.9

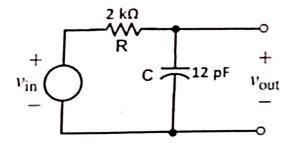


Fig.10

Section - II Answer all Questions (1 × 10 Marks)

- 07. For the given circuit in Fig.11, find the following.
 - (a) Network graph of the circuit. [2 Marks]
 - (b) Incidence and reduced incidence matrix [3 Marks]
 - (c) Cut-set matrix with branches ab, bc, bd as twigs [5 Marks]

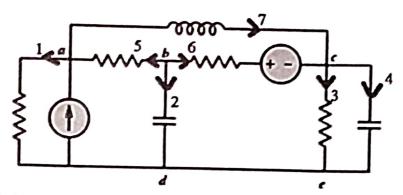


Fig.11

[10] (CO3/K3)

BL-Bloom's Taxonomy Levels - (K1-Remembering, K2-Understanding, K3-Applying, K4-Analysing, K5-Evaluating, K6-Creating)