

Continuous Assessment Test (CAT) - I AUGUST 2025

Programme		B.Tech.	Semester	;	Fall 2025-2026
Course Code & Course Title		BAEEE101- Basic Engineering	Slot	:	E2+TE2
	Т	Dr. SRIMATHI R			CH2025260103865
1000	П	Prof. MOHAMED ABDULLAH J			CH2025260103867
100000	н	Dr. RAVI V			CH2025260103869
	П	Prof. HARINARAYANAN J			CH2025260103871
	1	Dr. FEBIN DAYA J L			CH2025260103873
	ı	Dr. NITIN KUMAR KULKARNI			CH2025260103875
	1	Prof. BALAKUMAR I	Class	1 .	CH2025260103877
Faculty	1:	Prof. ANU SHALINI T	Number		CH2025260103879
	1	Prof. MANISH KUMAR DWIVEDI			CH2025260103881
		Prof. SHRI SARANYAA J			CH2025260103883
	-	Dr. SUMAN SAHA			CH2025260103885 CH2025260103887
		Prof. DHANESH R			CH2025260103887
	1	Prof. MARABATHINA MAHEEDHAR		1	CH2025260103889 CH2025260103893
	1	Dr. SUMATHI V			50
uration		90 Minutes	Max. Mark		.50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted.

Answer all questions

Q. No	Description	Marks	СО	BT Level
V	Using nodal analysis find the power dissipated in the 6Ω resistor for the network shown in Figure 1.	10	1	К3
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	1 5 A			
	Figure 1			

2 Find the Thevenin's equivalent circuit of the circuit shown in Figure 2	10	1	КЗ
2 Find the Thevenin's equation to the left terminal a to b. Then find the current through $R_L=36 \Omega$			
to the left terrifical a to			
$\frac{4\Omega}{12\Omega} \stackrel{1\Omega}{\geq} \frac{a}{2A} \stackrel{R_L}{\geq} R_L$			
8			
Figure 2			1//2
3 Find the current in 8Ω resistor for the given network shown in Figure	10	1	K3
3 using superposition theorem.			
20			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Figure 3			710
a) A series RC Circuit with R=20Ω and C=127μF has 160V, 50 Hz supply connected to it. Find Impedance, Current, real power, reactive power and power factor.	6	1	K3
b) A series RL circuit R = $4k\Omega$ and L=5mH is applied with 200V, $50kHz$	4	1	K3
source. Determine voltage across the resistor and the inductor.			
a) Illustrate and describe the circuit diagram used to determine the input and output characteristics of BJT in CB configuration.	6	1	K2
b) Using neat diagrams explain how a half wave rectifier works.	4	1	K2
*********All the best ********			IXZ