

Continuous Assessment Test (CAT) – I AUGUST 2025

Programme :	I	B. Tech	Semester	;	Fall Semester 2025-2026
Course Code & Course Title		BAPHY105 & Engineering Physics	Class Number	:	CH2025260103724 CH2025260103720 CH2025260103714 CH2025260103748 CH2025260103738 CH2025260103730 CH2025260103736 CH2025260103734 CH2025260103740 CH2025260103740 CH2025260103745 CH2025260103745 CH2025260103726 CH2025260103755 CH2025260103912
Faculty	:	Dr. B.Ajitha Dr. Rajasekarakumar Vadapoo Dr. Ramkumar M C Dr. Jitendra Narayan Dash Dr. Karthikeyan S Dr. Parasuraman E Dr. Ranjani Seshadri Dr. Gopinath Mudhana Dr. Dayasindhu Dey Dr. Shalini MG Dr. Rajesh Goswami Prof. Srinivasan T Prof. Dipthi. S Prof. Rishab Antosh	Slot		D2+TD2
Duration	:	1½ Hours	Max. Marks		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions Section A $(2 \times 10 = 20 \text{ marks})$

Q.	Sub Sec.	Description	Marks	СО	BT Level
No 1	360.	Describe Young's double slit experiment and derive the expression for the fringe width with neat diagram.	10	1	K1

(i) (ii)	What is the probability of a specific outcome after the second magnet in sequential Stern-Gerlach experiment with two apparatus as shown in figures?	5+5	1	K2
_	Section B (2 x 15 = 30 marks)			
(i) (ii)	Describe the experimental observations of blackbody radiation and explain the failure of classical theory. If the de-Broglie wavelength of a proton is three times the de-Broglie wavelength of alpha particle. Compare the ratio			К3
		5+5+5	1	K3
	Using assumptions, derive Schrodinger time independent and time dependent wave equation.	15	1	K1
	(ii) (iii)	second magnet in sequential Stern-Geriach experiment with two apparatus as shown in figures? Section B (2 x 15 = 30 marks) Section B (2 x 15 = 30 marks) Section B (2 x 15 = 30 marks) In the de-Broglie wavelength of a proton is three times the de-Broglie wavelength of alpha particle. Compare the ratio of velocities of proton and alpha particle. A 430 nm violet light is incident on calcium photoelectrode with a work function of 2.7 eV. Find the energy of the incident photons and the maximum kinetic energy of ejected electrons. Using assumptions, derive Schrodinger time independent	second magnet in sequential Stern-Geriach experiment with two apparatus as shown in figures? Section B (2 x 15 = 30 marks) Section B (2 x 15 = 30 marks) Section B (2 x 15 = 30 marks) (i) Describe the experimental observations of blackbody radiation and explain the failure of classical theory. If the de-Broglie wavelength of a proton is three times the de-Broglie wavelength of alpha particle. Compare the ratio of velocities of proton and alpha particle. A 430 nm violet light is incident on calcium photoelectrode with a work function of 2.7 eV. Find the energy of the incident photons and the maximum kinetic energy of ejected electrons. Using assumptions, derive Schrodinger time independent	second magnet in sequential Stern-Geriach experiment with two apparatus as shown in figures? (i) Section B (2 x 15 = 30 marks)