

Continuous Assessment Test (CAT) – I AUGUST 2025

Programme :		Integrated M-Tech S	Semester	:	FALL 25-26
Course Code & Course Title	:	IAEEE101, Basic Electrical and Electronics Engineering	Class Number	:	
Faculty	:		Slot	:	A1+TA1
Duration	:	90 minutes	Max. Mark	:	50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information
- Only non-programmable calculator without storage is permitted

Answer all questions

Q. No	Sub Sec.	Description	Marks
1	a	Find the current 'I' and the power absorbed by each element in the network of Figure 1. 8 A	5
	b	A 4Ω resistance is in series with the parallel combination of 20Ω resistance and an unknown resistance R_x . The equivalent resistance for the network is 8Ω . Determine the value of R_x .	5
2	-	By using mesh method, calculate the current in each branch of the circuit shown in Figure 2. $\begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	10

3	-	Obtain the node voltages in the circuit shown in Figure 3. below by using nodal method and find the current through 7Ω resistance. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10				
		$3 \text{ A} $ $\geqslant 2 \Omega$ $7 \Omega \geqslant$ 12 A $\downarrow \qquad \qquad$					
4		Find the current flowing through the 5 Ω resistor connected					
		across the terminals A and B as shown in Figure 4 using					
		Thevenin's theorem.					
		4Ω 3Ω A					
			10				
	_	15 V ± 2Ω ₹ (↑)6A ₹5Ω					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		В					
		Figure 4					
		Using superposition theorem, find the current flowing					
5		through the 2 Ω resistance in the circuit shown in Figure 5.					
		Also calculate the voltage drop across 2 Ω resistance.					
		4Ω 3Ω					
	_		10				
		$10 \text{ V} \oplus \qquad \lessgtr 5\Omega \qquad \lessgtr 2\Omega \spadesuit 2 \text{ A}$					
		Figure 5					
