Continuous Assessment Test (CAT) - I AUG 2025

		Continuous Associ	T T	AUG	
Programme		B. Tech (ECE)	Semester		FS 2025-26
Course Code & Course Title		BECE205L Engineering Electromagnetics	Class Number		CH2025260100348 CH2025260100349 CH2025260100346 CH2025260100351
Faculty	:	N. Chandrasekar Priyanka Das Anith Nelleri Amit Kumar	Slot		C1+TC1
Duration	:	90 Minutes	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions

	Answer all questions						
and the second of	- 1	Sub Sec.	Description	Marks	CO	BT Lev	
1.	1. (a)		Given point $P(-2,6,3)$ and vector $\mathbf{A} = y\mathbf{a}_x + (x+z)\mathbf{a}_z$, express P and \mathbf{A} in spherical coordinate system. Evaluate \mathbf{A} at the point \mathbf{P} in spherical coordinate system.	10	1	2	
	(l	,	Determine the curl of the vector field $\mathbf{A} = xy\mathbf{a}_x + y^2\mathbf{a}_y - xz\mathbf{a}_z.$	5	1	2	
			State whether the field has rotational nature.				
2.	(a)		The region between two concentric spherical conducting shells is charge free. The radii of spheres are $r_1 = 0.5cm$, $r_2 = 1.0cm$ and the corresponding potentials are $V_1 = -50V$, $V_2 = 50V$. Determine the potential distribution and the electric field strength between	10	1	3	
	(b)	I	the shells. In free space the electric flux density is given as $ \mathbf{D} = 2y^2 \hat{\mathbf{a}}_x + 4xy \hat{\mathbf{a}}_y - \hat{\mathbf{a}}_z mC/m^2 $. Find the total charge in the egion $1 < x < 2$, $1 < y < 2$, $-1 < z < 4$, cm.	5	1	3	
			Bron, -, -, -, -, -, -, -, -, -, -, -, -,				
		E	iven that the electric field in a certain region is $= (z+1)\sin\phi \hat{\mathbf{a}}_{\rho} + (z+1)\rho\cos\phi \hat{\mathbf{a}}_{\phi} + \rho\sin\phi \hat{\mathbf{a}}_{z} V/m.$ termine work done in moving a 4nC charge from	10	1		

(i) $A(1,0,0)$ to $B(4,0,0)$ B(4,0,0) to $C(4,0,0)$			
as shown in the prentrie			
Consider two concentric circular loops of wires carrying currents centre of the circular loops using Biot-Savart law. Given Fig. 1 (ii) Keeping the current $I = 3A$ fixed and changing the value of the centre becomes zero.	10	2	2