

Continuous Assessment Test (CAT) – I AUGUST 2025

Programme	:	Integrated M. Tech	Semester	:	Fall 2025-26
Course Code & Course Title	:	IAEEE101L Basic Electrical and Electronics Engineering	Class Number	:	CH2025260102877
Faculty	:	Dr. M. Prabhakar	Slot	:	A2 + TA2
Duration	:	1 Hour and 30 Minutes	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions

Q. No	Su b Se c.	Description	Marks	СО	BT Level
1		For the circuit given below, use current division and find the three branch currents. What is the voltage across A-B? A 2 4 3 3 3 3 3 4 3 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8	10	1	BT2
2		In the circuit given below, find the mesh currents and current through the 5Ω resistor. $10~\Omega \ \ \ \ \ \ \ \ \ \ \ \ \ $	10	1	BT2

	1						
3		For the circuit given below, mark the unknown node voltages and a reference node. Find the unknown node voltages using nodal analysis.	10	1	BT2		
	20 Ω						
		$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$		-10			
	+						
		Calculate the current through the 23Ω resistor using Superposition theorem for the circuit given below.	10	1	BT2		
4		$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $,				
		27 Ω					
		For the circuit given below, using Thevenin's theorem, find the current through the 50Ω resistor. Find the power dissipated across it.	10	1	ВТ2		
		100 Ω 30 Ω 20 Ω 20 Ω					
5							
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
