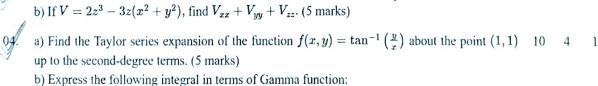


Reg. No.

Final Assessment Test(FAT) - Nov/Dec 2024

Programme	B.Tech.	Semester	Fall Semester 2024-25	
Course Code	BMAT101L	Faculty Name	Prof. Yuvarani C	
Course Title	Calculus	Slot	B1+TB1	
		Class Nbr	CH2024250103455	
Time	3 hours	Max. Marks	100	

General Instructions

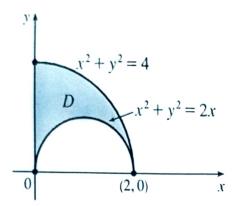

• Write only Register Number in the Question Paper where space is provided (right-side at the top) & do not write any other details.

Course Outcomes

- 1. Apply single variable differentiation and integration to solve applied problems in engineering and find the maxima and minima of functions.
- 2. Evaluate partial derivatives, limits, total differentials, Jacobians, Taylor series and optimization problems involving several variables with or without constraints.
- 3. Evaluate multiple integrals in Cartesian, Polar, Cylindrical and Spherical coordinates.
- 4. Use special functions to evaluate various types of integrals.
- 5. Understand gradient, directional derivatives, divergence, curl, Green's, Stokes and Gauss Divergence theorems.

Section - I

Answer any 10 Questions (10 × 10 Marks)			*M - Marks		
Q.No	Question	*M	СО	BL	
91.	Find the area of the region in the first quadrant bounded on the left by the y axis, below by the curve $y=\frac{x}{4}$, above left by the curve $y=1+\sqrt{x}$, and above right by the curve $y=\frac{2}{\sqrt{x}}$.	10	1	2	
02.	a) Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{\cos x}, \ y=1,$ $x=-\frac{\pi}{2}, \ x=\frac{\pi}{2}$ about the x axis. (5 marks) b) Calculate $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ for $u=\frac{2yz}{x}, \ v=\frac{3zx}{y}, \ w=\frac{4xy}{z}$. (5 marks)	10	1	1	
03.	a) Given $w = ln(2x+2y) + tan(2x-2y)$, find the value of $\frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial x^2}$. (5 marks)	10	2	2	



b) Express the following integral in terms of Gamma function: $\int_0^1 x^5 (1-x^3)^{10} dx \text{ (5 marks)}$

Find the absolute maximum and minimum values of the function $f(x,y) = 4x^2 + 2y^2 + xy$ 10 2 subject to the constraint $x + y \le 4$, $x \ge 0$, $y \ge 0$.

06

- (a) Find the volume of the solid which is above the region in the XY-plane bounded by $x=0; y=0; x=\sqrt[3]{y}; x=2$ and below the function $f(x,y)=e^{x^4}$. (5 marks)
- (b) Evaluate $\iint_D x \, dx \, dy$, where D is the region given as follows. (5 marks)

- 07. Evaluate the integral: 10 3 3 $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{2-\sqrt{4-x^2-y^2}}^{2+\sqrt{4-x^2-y^2}} (x^2+y^2+z^2)^{3/2} \ dz dy dx.$
- a) Evaluate the integral $\iint dxdy$ over the first quadrant and below the curve 08. 2 $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{1/3} = 1, a > 0, b > 0.$ (7 marks) b) Show that for smaller values of x

 - $erf(x) = \frac{2}{\pi} \left(x \frac{x^3}{3} + \frac{x^5}{10} \frac{x^7}{42} + \dots \right)$. (3 marks)
 - a) Determine if the given vector field is conservative or not? 10 5 1 $\vec{F} = (18x^2 + 4z^3)\vec{i} - 12yz\vec{j} - (6y^2 - 12xz^2)\vec{k}$. (5 marks)
 - b) Find the directional derivative of the scalar function $\phi = xy + yz + zx$ at (1, 2, 0) in the direction of $\overrightarrow{a} = \hat{i} + 2\hat{j} + 2\hat{k}$. Also, find its maximum value. (5 marks)
- Prove that $\overrightarrow{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x 4)\hat{j} + (3xz^2)\hat{k}$ is irrotational and find its scalar 5 2
- Verify Green's theorem for $\int_C (6y 3y^2 + x) dx + yx^3 dy$, where C is the curve formed by the 1 upper half of the unit circle and the x axis.
- 12. If $\vec{F} = y^2\hat{i} + x^2\hat{j} (x+z)\hat{k}$, then evaluate $\oint_C \vec{F} \cdot \vec{dr}$ using Stoke's theorem, where C is the 5 3 boundary of a triangle with vertices (0,0,0), (1,0,0), and (1,1,0).

BL-Bloom's Taxonomy Levels - (1.Remembering, 2.Understanding, 3.Applying, 4.Analysing, 5.Evaluating, 6.Creating)

