

Continuous Assessment Test (CAT) - I - August 2024

Programme Semester Fail 2024-25		Continuous Assessment		Fall 2024-25
Programme Course Code & Course Title BPHY101L & Engineering Physics Slot D1+TD1			Semester	ran 202 (2
Course Title			Slot	D1+TD1
00 Minutes Viax. Wark	Course Title	Kalai Priya. A Rishabh. B Caroline P John Kennedy L Justin Raj C- Ramkumar M C Punithavelan N. Rajasekarakumar V Sanjit Das	Number(s)	CH2024250103541 CH2024250103980 CH2024250103533 CH2024250103529 CH2024250103539 CH2024250103537 CH2024250103535 CH2024250103531 CH2024250103543
	Duration	: 90 Minutes	Max. Mark	50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted

Part - A (Answer any two questions (2 x 10 = 20 Marks))

	Part - A (Answer any two questions (2 x 10 - 20 Mart)			
, 1	From the given wave function, $y(x,t) = 6 \sin(6\pi t - 3x)$ find i) frequency, ii) wavelength iii) yelocity, iv) tension and v) maximum velocity of the particle in the	10		
*	and the string is U.U. Agilli.			
	explain the aim, principle, experimental setup and working of Hertz experiment in	10		
2	~	6		
	detail with suitable figures. (a) Show that $y(x,t) = f(x+vt)$ will be a solution of a standard wave equation,	O		
3	where v is the velocity of the wave.	4		
_	(b) Write the physical significance of gradient and curl.	-		
	Part - B (Answer any 2 questions $(2 \times 15 = 30 \text{ Marks}))$			
	Derive the equation for standing wave and their Eigen frequencies.	15		
4	Using Maxwell's equation for free space, derive the equation for plane electromagnetic			
	Waves for free space in terms of electric and magnetic field vector. Also show how	15		
5	these equations navigate to arrive at the velocity of the EM wave.			
	(a) Compute the divergence and curl of the following vector field,			
	(a) Compute the divergence and curr of the following	6		
	$\vec{F} = 3x^3z^4\hat{\imath} + 12xyz^3\hat{\jmath} + 5xy^2z\hat{k}$	1		
	(b) Define surface and volume integrals.	4		
)	(c) For two strings smoothly connected at a boundary, following are the parameters,			
	$\rho_1 = 0.2 \frac{kg}{m}$, $\rho_2 = 0.8 \frac{kg}{m}$ and $v_1 = 5 \frac{m}{s}$ with usual meanings. Find the values of the			
	following parameters (i) v_2 (ii) Z_1 (iii) Z_2 (iv) reflection coefficient.			
