

Reg. Number: 24 BLC6016

Continuous Assessment Test (CAT) - I - AUGUST 2025

| Continuous 1200               |   |                                                                    | , 110 0 0 0 1 2 0 2 |   |                                                       |  |  |
|-------------------------------|---|--------------------------------------------------------------------|---------------------|---|-------------------------------------------------------|--|--|
| Programme                     | : | B.Tech. (ECE/ECM)                                                  | Semester            | : | Fall 2025-26                                          |  |  |
| Course Code &<br>Course Title | : | BECE201L<br>Electronic Materials and<br>Devices                    | Class Number        | : | CH2025260100428<br>CH2025260100429<br>CH2025260100427 |  |  |
| Faculty                       | : | Dr. ANITH NELLERI<br>Dr. CHANDRASEKARAN N<br>Dr. B PRASHANTH KUMAR | Slot                | : | G1+TG1                                                |  |  |
| Duration                      | : | 90 min                                                             | Max. Mark           |   | 50                                                    |  |  |

## General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

**Physical constants:**  $N_A = 6.022 \times 10^{23} \ mol^{-1}$ ,  $k_B = 1.3807 \times 10^{-23} \ JK^{-1}$ ,  $k_B T = 0.0259 \ eV$  at 300K,  $m_e = 9.1 \times 10^{-31} \ kg$ ,  $e = 1.6 \times 10^{-19} \ C$ ,  $h = 6.626 \times 10^{-34} \ Js$ ,  $\varepsilon_0 = 8.854 \times 10^{-12} \ Fm^{-1}$ , Constants for Silicon:  $E_g = 1.1 \ eV$  and relative permittivity  $\varepsilon_r = 11.3$ .

## Answer all questions

| Q. No | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks | со | BT<br>Level |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------------|
| 1     | <ul> <li>A bar of n - type Germanium (Ge) of dimensions Length (L) = 0.010 m, width (W) = 0.001 m and thickness (T) = 0.001 m is mounted in a magnetic field of 0.2 T. The electron concentration in the bar is 7 × 10<sup>21</sup> electrons/m³. If a potential difference of 1 millivolt (1 mV) is applied across the long ends of the bar:</li> <li>a) Calculate the current flowing through the bar. [5 Marks]</li> <li>b) Calculate the Hall voltage developed between electrodes placed across the short dimension of the bar. Assume the mobility of electrons is 0.39 m² V⁻¹s⁻¹. Use the charge of an electron, e = 1.6 × 10⁻¹⁰C. [5 marks]</li> </ul> | [10]  | 1  | 2           |
| 2     | The conductivity $\sigma$ of a metal is $6.0 \times 10^7$ S/m, the concentration of conduction electrons $n$ is $8 \times 10^{28}$ m <sup>-3</sup> , and the electron mass $m$ is $9.1 \times 10^{-31}$ kg. Calculate the relaxation time $\tau$ . Also, explain the physical processes that determine the relaxation time in a real metal. [P. T. O.]                                                                                                                                                                                                                                                                                                         |       | 1  | 2           |

| 3   | <ul> <li>a) Explain the concept of the Fermi energy level in a semiconductor and discuss its significance for n - type and p - type materials. [4 Marks]</li> <li>b) Consider silicon at T = 300K so that N<sub>c</sub> = 2.8 × 10<sup>19</sup> cm<sup>-3</sup> and N<sub>v</sub> = 1.04 × 10<sup>19</sup> cm<sup>-3</sup>. Assume that the Fermi energy is 0.25 eV below the conduction band and the bandgap energy of silicon is 1.12 eV. Calculate the thermal equilibrium concentrations of free electrons and holes for the given Fermi energy. You may use, k<sub>B</sub>T ≈ 0.0259 eV at 300 K. [6 Marks]</li> </ul>                                                                                                                                                                                                                                  | [10] | 2 | 2 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|
| 4   | <ul> <li>a) Consider Silicon at T = 300 K, contains an acceptor impurity concentration of N<sub>a</sub> = 10<sup>16</sup> cm<sup>-3</sup>. Determine the concentration of donor impurity atoms (N<sub>a</sub>) that must be added so that the silicon is n - type and the Fermi energy is 0.20 eV below the conduction-band edge. For silicon at this temperature use, N<sub>c</sub> = 2.8 × 10<sup>19</sup> cm<sup>-3</sup> and k<sub>B</sub>T ≈ 0.0259 eV. [5 Marks]</li> <li>b) Using the result of part (a), calculate the electrical conductivity (σ) and resistivity (ρ) of the n-type silicon formed after compensated doping. Assume the mobilities at 300 K are, for electrons μ<sub>n</sub> = 1350 cm<sup>2</sup> V<sup>-1</sup>s<sup>-1</sup> and μ<sub>h</sub> = 480 cm<sup>2</sup> V<sup>-1</sup>s<sup>-1</sup> for holes. [5 Marks]</li> </ul> | [10] | 2 | 2 |
| ورا | a) Suppose the cross-sectional area is fixed due to packaging constraints. What other parameters can be adjusted to achieve the required resistance and current handling, and what trade-offs would each involve? [2 Marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |   |   |
| 5   | <ul> <li>b) In a GaAs semiconductor device, you observe that the electron diffusion current is much higher than the drift current despite applying a moderate electric field. Electron concentration decreases from 10<sup>17</sup> cm<sup>-3</sup> to 10<sup>16</sup> cm<sup>-3</sup> over 10 μm. If an electric field of 50 V/cm is applied: Given:</li> <li>μ<sub>n</sub> = 8500 cm<sup>2</sup> V<sup>-1</sup>s<sup>-1</sup></li> <li>D<sub>n</sub> = 220 cm<sup>2</sup> s<sup>-1</sup></li> <li>Calculate both drift and diffusion current densities. Then explain the physical significance and why diffusion dominates in this case. [8 Marks]</li> </ul>                                                                                                                                                                                              | [10] | 3 | 3 |
|     | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |   |   |