

Reg. Number:

Continuous Assessment Test (CAT) - 2 OCTOBER 2025

Programme	:	B.Tech - CSE (Cyber Physical Systems)	Semester	Fall 2025	
Course Code & Course Title		BEEE303L - Control Systems	Class Number	CH2025260101802 CH2025260101801	
aculty		Dr. P. Balamurugan Dr. J. L. Febin Daya	Slot	: A2+TA2	
Duration	:	90 Mins	Max. Mark	50	

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other informat
- Use of regular graph sheets and semi-log graph sheets is recommended.
- Only non-programmable calculator without storage is permitted.

ourse Outcomes:

- O2. Analyze the system performance in time and frequency domains.
- O3. Determine the stability of linear time invariant system in time and frequency domains

Answer all questions

Sub Sec.	Description	Marks	СО
	A magnetic disc drive requires a motor to position a read/write head over tracks of data on a spinning disk, as shown in Figure 1. The motor and the head may be represented by the transfer function: $G(s) = \frac{10}{s(\tau s + 1)}$ where $\tau = 0.001$ sec. The controller takes the difference of actual and desired positions and generates an error. This error is multiplied by an amplifier K. i) What is the steady-state position error for a step change in desired input? ii) Calculate the required K in order to yield a steady-state error of the present of the pres	1 10	
	Magnetic Disk Read/Write head Figure 1	-	

For the unity feedback system whose open-loop transfer function is $G(s) = \frac{K(s-2)}{(s-1)(s-3)}$, find the range of 'K' for closed-loop stability using Routh array. For the system shown in Figure 2, make an accurate plot of the root locus and find the following: a. Find the break-away and break-in points b. The range of K that yields stable system. c. The range of K that yield a stable system with critically damped second-order poles. $\frac{K(s)}{(s-2)(s-1)}$	15	1 1	K3
Figure 2	33		
Given a unity feedback system with the forward-path transfer function $G(s) = \frac{K}{(s+1)(s+3)(s+6)}$, find the range of 'K' to yield stability. Find the phase margin, gain margin for K = 10 using its frequency response.	15	2	К3
************All the best *********			