Continuous Assessment Test (CAT) - I AUGUST 2025

Program	Π	B.TECH	Semester	:	Fall 25-26
Programme Course Code & Course Title	:	BCSE304L Theory of Computation	Class Number		CH2025260100994 CH2025260100995 CH2025260100996 CH2025260100997 CH2025260100998
Faculty		ANAND M, UMMITY SRINIVASA RAO, JAYARAM B, SHIVANI GUPTA, BENIL T	Slot		D1+TD1
Duration	:	90 Minutes	Max. Mark		50

General Instructions:

· Write only your registration number on the question paper in the box provided and do not write other information

Answer all questions

Answer an question								
Q. No	Su b Se	Description	Marks	СО	BT Level			
1.	C.	Let $\Sigma = \{0,1\}$ and $\Omega = \{a,b\}$ be two alphabets. A function $H: \Sigma^* \to \Omega^*$ is defined as follows: $H(\epsilon) = \epsilon$, $H(0) = a$, $H(1) = ab$, and for any string $a_1a_2a_n \in \Sigma^* - \{\epsilon,0,1\}$, $H(a_1a_2a_n) = H(a_1) H(a_2) H(a_n)$. For example: $H(01101) = H(0) H(1) H(1) H(0) H(1) = a$ ab ab a $ab = aababaab$. For a language $L \subseteq \Sigma^*$, the language $H(L)$ is defined as: $H(L) = \{H(w) \mid w \in L\}$. Now, let $L = \{w \in \{0,1\}^* \mid w \text{ ends with } \{000\}$. Is $H(L)$ a regular language? Justify your answer. If your answer is 'yes,' design a deterministic finite automaton to justify it.	10	1	K4			
2.		Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be an alphabet and Σ^+ represent the whole numbers. Let $L \subseteq \Sigma^+$ be a language defined as $L = \{n: (n \bmod 5) \bmod 7 = 0, n \in \Sigma^+\}$ For example, $5 \in L$, $10 \in L$ but $22 \notin L$. Write a regular grammar G for representing the language L .	10	2	К3			
3.		In the C programming language, <i>delimited comments</i> are enclosed between the delimiters '/*' (opening) and '*/' (closing). Let L be the language of all syntactically valid delimited comments. A string w \(\in \) S must: (a) Begin with the opening delimiter '/*' and end with the closing delimiter `*/'. (b) Contain no occurrence of the sequence `*/' exceptions.		2	К3			

	at its termination. (c) Be composed solely of symbols from the alphabet $\sum = \{ /, *, a, b, c \}$ Design an ε -NFA (Nondeterministic finite automaton) to recognize the language L and convert the ε -NFA into an equivalent nondeterministic finite automaton without epsilon transitions. Illustrate the computation of your model on any sample input.			
4.	Let L be a language defined as: $L = \{(ab)^{(5k+2)} k \text{ is an integer} $ and $k \ge 0$ }. Is L a regular language? Justify your answer. If your answer is 'yes,' design a minimum state deterministic finite automaton to justify it.	10	1	K4
5.	Given k is a fixed positive integer. Let $L = \{a^nb^k : 1 \le k \le 2\}$ with n>=1 be a language on an alphabet $\{a, b\}$. Design a deterministic finite automaton (DFA) to recognize the language L and find an equivalent regular expression that can be generated by the DFA.	10	1	K4

**********All the best *********

13/8/2026 Dr. Sweela.S