

Final Assessment Test(FAT) - Apr/May 2025

Programme	B.Tech.	Semester	Winter Semester 2024-25
Course Code	BMAT102L	Faculty Name	Prof. Dhivya M
Course Title	Differential Equations and Transforms	Slot	D1+TD1+TDD1
		Class Nbr	CH2024250500869
Time	3 hours	Max. Marks	100

Instructions To Candidates

Write only your registration number in the designated box on the question paper. Writing anything elsewhere
on the question paper will be considered a violation.

Course Outcomes

CO1: Find solution for second and higher order differential equations, formation and solving partial differential equations.

CO2: Understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution.

CO3: Employ the tools of Fourier series and Fourier transforms.

CO4: Know the techniques of solving differential equations and partial differential equations.

CO5: Know the Z-transform and its application in population dynamics and digital signal processing.

Answer any 10 Questions (10 × 10 Marks)

01. Solve
$$(x+2)^2 \frac{d^2y}{dx^2} - (x+2) \frac{dy}{dx} + y = 3x + 4$$
.

[10] (CO1/K3)

- 02. (a) Find the charge on the capacitor in an RLC series circuit where L = 5/3 H, $R = 10\Omega$, C = 1/30 F, assuming zero initial charge and an initial current is 9 A. [5 Marks]
 - (b) Obtain a partial differential equation from $z = f(\sin(x) + \cos(y))$ by eliminating the arbitrary function. [5 Marks]

[10] (CO1/K3)

03, Solve
$$x(y^2 + z)p + y(x^2 + z)q = z(x^2 - y^2)$$
.

[10] (CO1/K3)

04. Evaluate
$$L^{-1}\left\{\frac{5p^2-15p-11}{(p+1)(p-2)^3}\right\}$$
, where $L^{-1}(F(p))$ represents the inverse Laplace transform.

[10] (CO2/K3)

05. (a) Show that
$$L\left\{\frac{\cos\sqrt{t}}{\sqrt{t}}\right\} = \sqrt{\frac{\pi}{p}}e^{-\frac{1}{4p}}$$
. [5 Marks]

(b) Find the half-range sine series of
$$f(x) = \sin x$$
. [5 Marks]

[10] (CO2,3/K2)

- Solve the simultaneous differential equations $\frac{dy}{dt} + 2x = \sin(2t)$, and $\frac{dx}{dt} + 2y = \cos(2t)$, x(0) = 1, y(0) = 0. [10] (CO4/K1)
- Using Laplace transform, solve the first order partial differential equation $y_t = -y_x$, x > 0, t > 0 with y(0,t) = 10, and y(x,0) = 0.
- 08. Expand in Fourier series of $f(x) = x \sin(x)$ for $0 < x < 2\pi$ and deduce the result $\frac{1}{1 \cdot 3} \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} \cdots = \frac{\pi 2}{4}$.
- 09/ (a) Find the function if its Fourier sine transform is $\frac{e^{-a}}{a}$. [5 Marks]
 - (b) Show that $e^{-x^2/2}$ is self-reciprocal with respect to the Fourier cosine transform. [5 Marks]

[10] (CO3/K1)

10. Using the Fourier transform, solve $\frac{\partial u}{\partial t} = 9 \frac{\partial^2 u}{\partial x^2}$, $-\infty < x < \infty$, $t \ge 0$ subject to the condition u(x, 0) = f(x).

[10] (CO3/K3)

- 11. Solve the difference equation $y_{n+2} 2\cos(a)y_{n+1} + y_n = 0$ with $y_0 = 1$, $y_1 = \cos(a)$ using Z-transform. [10] (CO5/K3)
- 12. (a) Find Z[u(n)] where $u(n) = (n+1)^3$. [5 Marks] (b) Find $Z^{-1}\left[\frac{z^2}{(z-2)^3}\right]$. [5 Marks]

[10] (CO5/K3)

BL-Bloom's Taxonomy Levels - (K1-Remembering, K2-Understanding, K3-Applying, K4-Analysing, K5-Evaluating, K6-Creating)