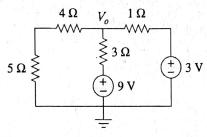


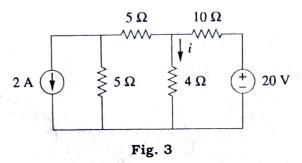
Continuous Assessment Test - 1, August 2024

Programme	: B. Tech. CSE	Semester	1	Fall 2024 - '25
Course	Basic Electrical and Electronics Engineering	Code	:	BEEE102L
Faculty	: D. R. Binu Ben Jose	Slot	:	C1+TC1
	Common question across C1 slot	Class Number	:	CH2024250103732
Time	$: 1\frac{1}{2} \text{ Hours}$	Max. Marks	:	50

Answer ALL the Questions (5 x 10 = 50 Marks)

1. Use mesh analysis to find V_o marked in the circuit shown in Fig. 1. (10)




Fig. 1

2. Find the voltages v_1 and v_2 marked in the circuit shown in Fig. 2 using nodal (10) analysis.

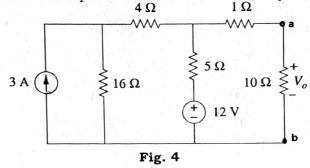


Fig. 2

3. Compute the **current** *i* marked in the circuit shown in Fig. 3 using (10) Superposition principle.

- 4. In the circuit in Fig. 4, a load resistance of value 10Ω is connected across the terminals a-b.
 - (a) For what value of load resistance will the maximum power be delivered to the load?
 - (b) Compute the maximum power that can be delivered by the circuit.

5. A load impedance Z is connected across a voltage source

$$v(t) = 12 \sin(10t + 20^{\circ}) V$$
.

- (a) If the current drawn by the load is $i(t) = 5\cos(10t 30^{\circ})A$, find the phase angle between voltage and current. Comment on whether the current leads or lags the voltage.
- (b) If the load consists of a resistor R = 5 Ω, an inductor L = 0.2 H and a capacitor C = 0.1 F are connected in series, compute the current drawn by the load.
 (6)

(4)

(4)

(6)