

| Reg. Number: | 1 |
|--------------|---|
| 0            |   |

## Continuous Assessment Test (CAT) –II- March 2025

| Programme                  | : | B.Tech (CSE/EEE)                                                                                                                                                                           | Semester     | :  | WS 2024-25                                                                                                                                                                                                             |
|----------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code & Course Title |   | BECE102L & Digital Systems<br>Design                                                                                                                                                       | Class Number | •  | CH2024250501659,<br>CH2024250501667,<br>CH2024250501674,<br>CH2024250501682,<br>CH2024250501691,<br>CH2024250501700,<br>CH2024250501711,<br>CH2024250501719,<br>CH2024250501753<br>CH2024250501624,<br>CH2024250501638 |
| Faculty                    | : | DR. GARGI RAINA DR. SUBHASHINI N DR. SASITHRADEVI A DR. P. NIRMALA DR. SOURABH PAUL DR. SRIVATSAN K DR. GIRIJA SANKAR DR. SUKRITI DR. SATHYA SREE DR. SRIRAMALAKSHMI P DR. VIMALA GAYATHRI | Slot         | •• | A1+TA1                                                                                                                                                                                                                 |
| Duration                   | : | 90 minutes                                                                                                                                                                                 | Max. Mark    |    | 50                                                                                                                                                                                                                     |

## General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted.

| Answer all questions |             |                                                                                                                                                                                                                                                                       |       |          |
|----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| Q. No                | Sub<br>Sec. | Description                                                                                                                                                                                                                                                           |       | BT Level |
| 1.                   | Sec.        | <ul> <li>(i) Implement the logic function F(A, B, C, D) = AC + ABD + ACD using only one 4×1 multiplexer and external gate(s). [7 marks]</li> <li>(ii) Find the Boolean function F(A, B) for the following combinational circuit given in Fig. 1. [8 marks]</li> </ul> | Marks | L3       |
|                      |             | Fig. 1.                                                                                                                                                                                                                                                               |       |          |

|    | Total ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 5. | For the logic diagram shown in below Fig. 3, assume that the T flip-flop initially has a HIGH output, while the JK flip-flop starts with a LOW output. Formulate a table as shown below representing the sequence of outputs produced from J-K flip flop for the next 5 clock pulses.  CIK T Q <sub>T</sub> Q <sub>T+1</sub> J K Q <sub>JK</sub> Q <sub>JK+1</sub> Fig. 3.                                                                                                                                                                                | 10 | L3 |
| 4. | Identify and explain the circuit shown in Fig. 2. Write a structural Verilog code that describes the behaviour of the given circuit, establishing the relationship between the inputs $(x_3x_2x_1x_0, y_3y_2y_1y_0, \text{ and } c_0)$ and the outputs $(s_3s_2s_1s_0, c_4, V, N, \text{ and } Z)$ .   You have the inputs $(s_3s_2s_1s_0, c_4, V, N, \text{ and } Z)$ .  You have $(s_3s_2s_1s_0, c_4, V, N, \text{ and } Z)$ .  You have $(s_3s_2s_1s_0, c_4, V, N, \text{ and } Z)$ .  You have $(s_3s_2s_1s_0, c_4, V, N, \text{ and } Z)$ .  Fig. 2. | 10 | L3 |
| 3. | Perform multiplication of -19 & 07 using Booth's multiplication algorithm with its stepwise operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | L2 |
| 2. | are sent to a remote processing unit. To ensure reliability, an additional bit is appended to each transmission, making sure the total count of 1s remains odd. Identify the circuit responsible for generating this extra bit. Represent its truth table, logical expression and draw the circuit diagram.                                                                                                                                                                                                                                               | 5  | L2 |