

Continuous Assessment Test (CAT) - I), August 2024

Programme	: B.Tech.	Semester	: Fall 2024-2025
Course Title	: Calculus	Code	: BMAT101L
		Slot	: E1+TE1
Faculty	Dr. SAGITHYA T Dr. SANKARSAN TARAI Dr. SANDIP SAHA Dr. VIJAY KUMAR P Ms. KIRUTHIKA Dr. NATHIYA N Dr. SUDIP DEBNATH Dr. SAURABH CHANDRA MAURY Dr. SOUMENDU ROY Ms. SRILEKHA	Class No	CH2024250103894 CH2024250103896 CH2024250103901 CH2024250103905 CH2024250103919 CH2024250103920 CH2024250103922 CH2024250103924 CH2024250103926 CH2024250103996
Duration	: 1 1/2 Hours	Max. Marks	: 50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted.

PART A

Answer all the Questions $(5 \times 10 = 50 \text{ marks})$

Q. No.	Question Description	Marks
1.	(a) Find all possible 'c' value(s) of Mean Value Theorem applied to the function	5+5
	$f(x) = 2x + \sqrt{x-1}$ on [1,5].	
	(b) Find absolute maximum and minimum for the function $f(x) = \sin(x) + \cos^2(x)$ in $[0, \pi]$.	
2.	For the function $f(x) = 3x^4 - 4x^3 - 6x^2 + 12x + 1$, (i) find the interval where $f(x)$ is increasing and decreasing, (ii) find where the local extrema occur, and (ii) find the intervals where $f(x)$ is concave up and concave down.	10
	 (a) Determine the area between the two curves y = x² - 2x and y = x in the first quadrant (b) Determine the volume of the solid obtained by rotating the region bounded by y = x y = 2x - x² about the line y = 0 in the first quadrant. 	5+5
4.	(a) Show that the function $f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^4 + y^4}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$	2.5+ 2.5 +
	is not continuous at the origin (0, 0).	5

(b) Show that for the function
$$f(x, y) = \begin{cases} y + x \sin(\frac{1}{y}), & \text{if } y \neq 0 \\ 0, & \text{if } y = 0 \end{cases}$$
, the $\lim_{y \to 0} \lim_{x \to 0} \lim_{y \to 0} f(x, y)$ exist but $\lim_{x \to 0} \lim_{y \to 0} f(x, y)$ does not exist.

(c) If
$$v = (x^2 - y^2) * f(xy)$$
, then prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = (x^4 - y^4)f''(xy)$.

- 5. (a) If $z = 2xy 3x^2y$ and x is increasing at rate of 2 cm/s, determine at what rate y must be changing so that z shall be neither increasing nor decreasing at the instant when x = 3 cm and y = 1 cm.
 - (b) Determine whether $u = x^2 e^{-y} \cosh(z)$, $v = x^2 e^{-y} \sinh(z)$, $w = 3x^4 e^{-2y}$ are functionally dependent. If so, find the relation between them.