Reg. Number:

Continuous Assessment Test (CAT) - I JANUARY 2025

Programme	:	B.Tech. (Artificial Intelligence and Machine Learning)	Semester	:	Winter 2024-25
Course Code & Course Title		BCSE417L-Machine Vision	Class Number	:	CH2024250502402 CH2024250502405
Faculty	:	Dr Bharadwaja Kumar Dr S.Rajarajeswari	Slot	:	A1
Duration	:	90 Minutes	Max. Mark		50

General Instructions:

 Write only your registration number on the question paper in the box provided and do not write other information.

Answer all questions

Q. No	Sub Sec.	Description	Marks
1	a) b)	The company's printer uses the CMYK color model, and the image has a pixel with the following RGB values: (R,G,B)=(255,100,150) The company needs to convert the pixel color into the CMYK model to adjust the ink levels. Convert the RGB values to the CMYK color model calculate the required percentage of each ink (C, M, Y, K) for the printer to reproduce this color. (5 Marks) A photographer uses a pinhole camera to capture an image of a	
		distant landscape. The pinhole camera has a very small aperture, leading to an image that is sharp but dim. The photographer adjusts the exposure time to capture more light, but the image becomes blurry as the light spreads. • Illustrate the relationship between the aperture size, exposure time, and image clarity in the context of the pinhole camera model. How does the size of the pinhole affect the sharpness and brightness of the image? (3 Marks) • Discuss the trade-off between sharpness and exposure time in pinhole photography. (2 Marks)	10
2		 A robotics team is designing a vision system to analyze images captured by a drone for terrain mapping. The system processes grayscale images, where each pixel's intensity represents elevation levels which is given below. Two pixels are considered part of the same terrain feature if the absolute intensity difference between them is ≤ 30, indicating similar elevation levels. a) The drone identifies a key feature starting at the pixel located at (2,2) of the below table (value = 50). Using 4-connectivity, determine which pixels are part of this terrain feature and list the connected pixels. (2.5 Marks) 	10

3 A team of astrophysicists is analysing a grayscale image captured by a space telescope to identify faint celestial objects in the background of a star cluster. The image has low contrast, making it difficult to differentiate between objects and background noise. The team decides to use to enhance the image contrast and improve visibility. 43 65 66 113 72 76 61 187 89 64 72 76 61 187 89 64 72 76 135 137 162 154 137 35 113 43 56 128 56 43 154 162 222 132 212 132 187 128 113 196 66 65 a) Demonstrate the histogram equalization process with all intermediate steps (7 Marks) b) Draw the histograms of the image before and after histogram equalization to visually compare the intensity distributions. (3 Marks) 4 A security team is working with a surveillance video feed that conditions. The team needs to enhance the video frames to plan to apply image enhancement techniques to smooth the are given in a below 5x5 window.		met anal usin with in the man three	team de hod using lyse the ter app this app the result he connect rks) optimize the shold is a shold affect both 4-constant of the constant of	rain feat broach ar from 4- ed comp ne system adjusted.	ure. Detend components onents of for diff Discuss e and str	ermine to are the vity. Discusing before the show the cucture of the current terms.	the conresize of cuss the oth the errains, the chapter the te	the inte	ixels ature ences ls. (5 insity the ature	
captured by a space telescope to identify faint celestial objects in the background of a star cluster. The image has low contrast, making it difficult to differentiate between objects and background noise. The team decides to use to enhance the image contrast and improve visibility. 43 65 66 113 72 76 61 187 89 64 72 76 135 137 162 154 137 35 113 43 56 128 56 43 154 162 222 132 212 132 187 128 113 196 66 65 a) Demonstrate the histogram equalization process with all intermediate steps (7 Marks) b) Draw the histograms of the image before and after histogram equalization to visually compare the intensity distributions. (3 Marks) 4 A security team is working with a surveillance video feed that has been affected by motion blur and noise due to low lighting improve the visibility of critical features, To achieve this, they image without losing improvement techniques to smooth the		0 1 2 3	10 20 30 40	20 30 40 55	31 10 50 60	90 60 85	55 60 70 80			
a) Demonstrate the histogram equalization process with all intermediate steps (7 Marks) b) Draw the histograms of the image before and after histogram equalization to visually compare the intensity distributions. (3 Marks) A security team is working with a surveillance video feed that has been affected by motion blur and noise due to low lighting improve the visibility of critical features, To achieve this, they image without losing important data.		making backgrou image co	it difficuland noise. Ontrast and	of a star of the teat improve	cluster. differenti am decide visibilit	The image ate bet des to use.	ge has I ween ouse to	ow contobjects enhance	rast,	
b) Draw the histograms of the image before and after histogram equalization to visually compare the intensity distributions. (3 Marks) A security team is working with a surveillance video feed that has been affected by motion blur and noise due to low lighting conditions. The team needs to enhance the video frames to plan to apply image enhancement techniques to smooth the			137	162	154	137	2	-		
has been affected by motion blur and noise due to low lighting conditions. The team needs to enhance the video frames to plan to apply image enhancement techniques to smooth the		113	162	222	132	212	1	32		10
a) Apply an Averaging Filter and calculate the new	4	113 154 187 a) D ir b) D h	162 128 Demonstrate termediate Draw the listogram existributions	222 113 e the hister steps ('histogram qualizations. (3 Ma	132 196 togram e 7 Marks ns of th on to vis	equalizates) ne imag	ion produce before	cess with	after	10

		Surrou Calcul and (nding pi	xels base new value the bel	ed on their	ir proxi highlig	ferent we imity to the thted pixe ig this	le center. l at (2,2)	
		(x, y)	0	1	2	3	4	7	
		0	12	18	25	35	40		
		1	18	22	28	38	42		
		2	25	30	35	45	50		
		3	35	38	45	55	60		
		4	40	42	50	60	65		
5	boun	daries an	d moven	nents in l	ow-light	condit	to detections. The	system	
5	boun	daries and esses a 5x sities:	d moven 35 pixel	nents in legrayscale	ow-light image v	condit with the	ions. The	system	
5	boun	daries and esses a 5x sities:	d moven 35 pixel	nents in legrayscale	ow-light image v	condit with the	ions. The following	system	
5	boun	daries and esses a 5x sities:	d moven x5 pixel 20 35	grayscale	ow-light image v	condit with the	ions. The following	system	10
5	boun	daries and esses a 5x sities: 40 120 90	20 35 90	grayscale 130 100 50	ow-light image v	condit with the	150 60	system	10
5	boun	daries and esses a 5x sities:	d moven x5 pixel 20 35	grayscale	ow-light image v	condit with the	ions. The following	system	10