Reg. Number:

Continuous Assessment Test (CAT) - II - April 2024

Continuous rassossans							
П		Semester	:	Winter 23-24			
:	B.Tech.(CSE)	Code		BCSE209L			
;	Machine Learning	Class Number	:	CH2023240501696			
:	Dr. Syed Ibrahim S P (50392)	Slot	:	C1+TC1			
:	1½ Hours	Max. Mark		50			
	:	: B.Tech.(CSE) : Machine Learning : Dr. Syed Ibrahim S P (50392)	: B.Tech.(CSE) Code Class Number Dr. Syed Ibrahim S P (50392) Semester Code Class Number Slot Max.	: B.Tech.(CSE) Code Class Number Dr. Syed Ibrahim S P (50392) Semester : Code Samester : Machine Learning Semester : Code Class Number : Max.			

General Instructions:

- · Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions

O. No Sub Sec. Consider a neural net for a binary classification which has one hidden layer as shown in the figure. We use a linear activation function $f(z) = cz$ at hidden units and a sigmoid activation function $g(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function $f(z) = \frac{1}{1 + e^{-z}}$ at the output $f(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function $f(z) = \frac{1}{1 + e^{-z}}$ at the output $f(z) = \frac{1}{1 + e^{-z}}$ at the o
Consider a neural net for a binary classification which has one hidden layer as shown in the figure. We use a linear activation function $f(z) = cz$ at hidden units and a sigmoid activation function $g(z) = \frac{1}{1 + e^{-z}}$ at the output unit to learn the function from $f(z) = cz$ at hidden with the function from $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and a sigmoid activation function $f(z) = cz$ at hidden units and $f(z) = cz$ at hidden units a
x _i , c and weights w _i . (5 Marks) 2. What is the final classification boundary? (3 Marks) 3. Draw a neural net with no hidden layer which is equivalent to the given neural net, and write weights w of this new neural net in terms of c and w _i . (2 Marks)

2.		Consider a table with a single attribute "Wind" and Category "Rain", where "wind" can take two attribute values — High and Low, and "Rain" has two classes — Yes and No. There are 10 entries in the table, and it is known that 8 entries in the table have wind = high. It is also known that 8 entries in the table also have rain = yes. Design a suitable logistic regression model.								
		Table	Table 1: Dataset							
		#	# Attribute							
	100		A1	A2	A3	A4				
	1	1	{{A1}}	{{A2}}	{{A3}}	{{A4}}	1			
		2	{{A5}}	{{A6}}	{{A7}}	{{A8}}				
		3	{{A9}}	{{A10}}	{{A11}}	{{A12}}				
3.		4	{{A13}}	{{A14}}	{{A15}}	{{A16}}	15			
J.		5	{{A17}}	{{A18}}	{{A19}}	{{A20}}				
		6	{{A21}}	{{A22}}	{{A23}}	{{A24}}	-			
		i) Consider the above dataset, {{A1 to A24}} represents continuous values range from 1.0 to 5.0. Choose two initial centroids optimally and form suitable Clusters based on feature values. [10 Marks]. ii) Assume, you have applied Fuzzy C-means clustering on the given data. Assume imaginary output and show that as a diagram to present it and provide its suitability in this data. [5 Marks].								
4.		In online learning, we can update the decision boundary of a classifier based on new data without reprocessing the old data. Now for a new data point that is an outlier, which of the following classifiers are likely to be affected more severely?								
	1	MLP, No your	B, LR, SVM ar	nd any other classifier o	f your choice. Gi	ve explanation				